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Abstract. We calculate the width of the growing interface of ballistic aggregation in the 
limit in which the range of the sticking interaction between the particles becomes infinite. 
We derive a scaling form for the width, a n d  we compute the short-  and  long t ime  exponents 
finding U = $  and  CI =;. Furthermore,  we find that the crossover exponent defining the 
argument of the scaling function is y = 4. We compare these exact results with computer 
simulations, finding excellent agreement.  We also discuss the relation of' these results to 
those of ordinary finite-range ballistic aggregation. Finally, we present a simple expression 
for the density of all ballistic aggregation clusters, regardless of the range of the interaction, 
which agrees with known results and  interpolates between the infinite- and  finite-range cases. 

Because of its apparent simplicity and evident applicability to a variety of experimental 
situations, ballistic aggregation is one of the most commonly studied of the many 
models of non-equilibrium growth (Vold 1963, Sutherland 1966, Meakin 1985, 
Bensimon et a1 1984, Family and Vicsek 1985, Meakin et a1 1986). The model is 
believed to be applicable to several diflerent kinds of deposition processes including 
physical vapour deposition and molecular-beam epitaxy. In addition, the growth 
algorithms defining ballistic aggregation are extremely simple to state and to implement 
on a computer, and the resulting aggregates display many surprising and  intriguing 
features. 

Unfortunately, despite its simplicity, attempts to directly analyse ballistic aggrega- 
tion have not met with much success. Nevertheless, some analytical progress has been 
made by studying models related to ballistic aggregation, but which are easier to solve 
(Meakin et a1 1986, Kardar et a1 1986, Gelband and Strenski 1985). One such model 
is an extreme limit of ordinary ballistic aggregation in which the range of the interaction 
between the particles is taken to infinity. The static properties of this infinite-range 
ballistic aggregation ( IRBA'I  have been studied recently by Gelband and  Strenski (1985), 
who derived a number of exact results for the density and correlation functions of the 
aggregate. In this paper, we will discuss the growth dynamics of this model. In 
particular, we will compute exactly the exponents describing the long- and short-time 
behaviour of the growing interface. 

To begin, let us first review the model. The simplest manifestation of ordinary 
ballistic aggregation is obtained by considering a two-dimensional square lattice. (The 
generalisation to higher dimensions will be obvious.) Place a line of L particles (the 
substrate) along the x axis. For simplicity, we will choose periodic boundary conditions 
in the x direction. At each time step, randomly choose a value of x and drop a particle 
in the y direction along the lattice line s = c until it sticks to the aggregate. The simplest 
sticking rules are that the particle dropped along the line x = c sticks at the lattice site 
x = c, y = max[h(c - 11, h ( c ) +  1, h ( c +  l ) ] ,  where h ( a )  is the largest value of y at which 
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a particle occupies a lattice site in the column x = a. This model, with different choices 
of dimension and substrate, has been discussed by a number of authors (Vold 1963, 
Sutherland 1966, Meakin 1985, Bensimon et al 1984, Family and Vicsek 1985, Meakin 
et al 1986). 

An interesting modification of this algorithm, which we shall discuss in  this 
paper, is to change the range of the sticking interaction so that the particle dropped in 
column x = c sticks at x = c, y = max[ h (  c - U), h (  c - r + I ) ,  . . . , h ( c )  + 1, h(  c + 1 ), 
h ( c + 2 ) ,  . . . , h ( c +  r ) ] .  I f  r = L, we have infinite-range ballistic aggregation. 

Let us consider the roughness of the growing interface of IRBA as a function of L 
and of 

1 
( h ) = - C  h ( x )  

L ,  

the average height of the interface above the substrate. We take, as a measure of the 
roughness, the standard deviation of the heights of the columns, i.e. 

A h  ( ( h 2 ) - ( h ) ' ) ' ' ' .  (1)  

We are particularly interested in the short- and long-time behaviour of Ah.  It is 
typical in growth models that the behaviour of A h  in these limits is determined by two 
exponents Y and a such that 

A h  - ( h ) "  L + cc (short times) ( 2 )  

A h  - L" ( h ) + ~  (long times). (3) 

We will now explicitly verify these scaling relations for I R B A  and calculate v and 
a. Our calculations assume that the particles in different layers are independently 
distributed, and that they are randomly distributed within the same layer. Since we 
are working in the limit of large L, these assumptions are quite reasonable. It is clear 
from the growth algorithm that there is only one particle in each layer which violates 
these assumptions, and that is the particle which begins a new layer and  is therefore 
constrained to lie directly above a particle in the previous layer. For large L, this will 
have a negligible effect on the distribution. 

Let us consider then a cluster formed by the I R B A  algorithm with n completed 
layers. (Note that once a new layer is begun, the I R B A  algorithm does not allow any 
particles to penetrate to previous layers.) Because the particle distribution is random 
and independent as described above, the quantities ( h )  and Ah,  which are averages 
taken over a single large cluster, can be computed by averaging over an ensemble of 
clusters. Let I ,  be the number of particles in layer i for some sample of I R B A ,  and let 
Q ( I , )  be the probability to have exactly I ,  particles in  the ith layer. Then following 
the simple calculation of Gelband and Strenski (1985) we have 

I,L! 
( L  - I ,  ) !  = L L - ,  (4) 

and the probability to have the configuration { I , .  1 2 , .  . . , I , , }  is 
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Now consider a given column in an I R B A  cluster. Using the assumption that the 
particles are independently and randomly distributed, the probability that a given 
column has a height h is 

so that for a given set { I , } ,  the average height in that cluster is 
6=C h P ( h ) .  

h 

To compute ( h ) ,  we must average (6)  over all sets { I , }  to obtain 

( 7 )  

Equations analogous to ( 7 )  and (8) apply also to (Ah)’,  as well as to any other quantity 
composed of independent sums over columns of the cluster. 

The sums in (8) can be performed easily by noting that P ( h )  and T ( { I , } )  are 
composed of independent factors, each depending on one I , .  Because there is no 
explicit dependence on the column position, the sums over the I are independent of 
i. Thus, after a little algebra, (8) becomes 

where 
L 

( I ) =  c [KXOl. 
I =  1 

Similarly, we can derive an  expression for (h’) which is 

To proceed, we need to estimate the dependence of ( I )  on L. One derivation of 
this dependence is given in Gelband and Strenski (1985). Here we give a slightly 
simpler argument: Q ( I )  is positive, singly peaked and  normalised to one. It is therefore 
clear that 

where Io  is the position of the peak of Q (  I ) .  Since Q( I ) /  Q(  1 + 1) = I (  I + 1)/ L, the peak 
is at a position which is of the order of J L .  On the other hand, 

L !  L - l  L’( L - I)’ -- I’L! 

L !  L l ( L - I ) 2  

( I ) =  TI L I T ’ ( L - I ) !  - c  LL+’ / = I )  I !  

<F I = ( j  c I !  = \m, (13) 
- 

Thus ~ I 0 - - v ’ L < ( I ) < ~  27rL so that I is of the order of d‘L. 

the sums in (9)  and ( l l ) ,  and R e  find 
We are now in a position to calculate v and a. I t  is straightforward to carry out 
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and 

Defining 

y = ( n  + ~ ) / J L  
we can write (14) and (15) in the limit of large L and n as 

( h ) / J L = y + e - ’  - 1  ( L  large) (16) 

( A ~ ) ’ / L =  1 - e - ” - 2 y e - ‘  ( L  large). (17)  

( A h ) ‘ =  L{1 -exp[-?g((h)/JL)1-2g((h)/JL) exp[-g((h)l’JL)]} (18) 

We may write (17) as 

where y = g ( x )  is the inverse function of x = y + e - ’  -1. The asymptotic scaling 
relations follow immediately: 

( A h ) * =  L F ( ( h ) / J L )  (19) 

where the scaling function F has the properties 

F (  x + 0 )  + X’’> F ( x + c o ) +  1. (20) 

For short times, y<< 1. Using ( 1 7 ) ,  (19) and (20), it is easy to see that for short 
times A h  - ( / I ” ’ ~ L ’ ’ ~  , so that the short-time exponent v = i. For long times, j >> 1 and 
A h  - L”2, so that the long-time exponent a = i. It is common to define a crossover 
exponent y which controls the way in which ( h )  scales with L. This can be read off 
from (19), which tells us that y = 1.. 

In figure 1, we compare the results of computer simulations of i R B A  with our 
calculation (19). In this figure, we have plotted I n ( A h / J L )  against I n ( ( h ) / J L ) .  The 
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Figure I .  The scaling fun’-tion equation ( 1 9 ) .  See text for detailed explanation 
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full curve is equation (19). I f  our scaling results are correct, all the data for different 
values of L should lie along the same curve, given by (19). We have performed 
simulations of I R B A  with L = 100 000, 50 000, 25 000, 12 500, 6250 and  3125. All the 
data from these simulations fall directly on the curve in figure 1 to within the resolution 
of the graph. For somewhat smaller values of In( (h) / JL)  than shown in figure 1, the 
data for different values of L deviate from each other due to initial transient effects. 
These transients disappear after one complete layer is formed on the substrate. Because 
particles are deposited randomly along the substrate, it is not difficult to see that in 
the transient region the slope of the In (Ah)  against In((h))  curve is i, independent of L. 

It is interesting to compare our results for v, a and y to those obtained in ordinary 
short-range ballistic aggregation. In the short-range case (in any dimension) simple 
scaling arguments can be used (Meakin et al 1986) which suggests that y = a/v and 
that 2v = a (  v + 1). The generally accepted values of v, a and y for short-range ballistic 
aggregation in two dimensions, as determined using both numerical and analytical 
methods, are v = f ,  a =$  and y =+. In three dimensions the situation is much less 
clear, with computer simulations indicating v = f and a = i, while various other argu- 
ments give v = 0, a = o or  v = f ,  a = t .  

Our results are in marked contrast to the behaviour found in ordinary short-range 
ballistic aggregation. In our case, because of the explicit long-range interaction, the 
simple scaling arguments used in the short-range case d o  not apply. For instance, even 
in the short-time regime, A h  depends on L in I R B A .  Furthermore, the crossover 
behaviour in I R B A  is qualitatively different than in the two-dimensional short-range 
case. For I R B A  the long-time behaviour sets in when the height is only of the order 
of the square root of the substrate size, which is much sooner than in the two- 
dimensional short-range case. In addition, whether or not the exponent relations 
presented in the last paragraph always apply in the short-range case, they clearly are 
not satisfied in I R B A  as our exact values of a, v and y indicatet. 

It would be tempting to try to identify I R B A  with the d + cc limit of short-range 
ballistic aggregation. However, this is probably incorrect. The d -,a3 limit of short- 
range ballistic aggregation is obtained by considering short-range interactions, studying 
the problem for large L and/or  ( h ) ,  and then letting the number of nearest neighbours 
increase. In I R B A  r, the range of the interaction, is set equal to L from the beginning, 
and it seems unlikely that the limits ( L ,  ( h ) )  + a3 and r-,  L commute. Moreover, if 
I R B A  were the d -, cc limit of short-range ballistic aggregation, we might expect the 
short-range exponent relations to be valid, which they are not. 

Despite these differences, I R B A  is clearly interesting in its own right. Moreover, 
one can consider a class of theories with interactions which interpolate between I R B A  

and short-range ballistic aggregation and can thereby relate the two. To illustrate this, 
we show how such a range of models can elucidate some of the static properties of 
ballistic aggregation. Consider ballistic aggregation grown on a linear substrate of 
length L, such that r, the range of the sticking interaction, is r - Lp. Let us ask, what 
is ( I )  in this case? Roughly, a layer will be complete when there is at least one particle 
in each region of length r that is directly above a particle on the previous layer. There 
are L / r  such regions, so ( I )  - ( L / r )  x (the number of particles per region of length r 
such that at least one is directly above a particle on the previous layer) = ( L / r ) t .  Now 
suppose we drop a particle in a given region of length r which is the first particle in 

f We note, haweber, that n = 4 both in I K H A  and  two-dimensional finite-range ballistic aggregation. The 
significance of this intriguing correspondence is not clear to us. 
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that region in that layer. I f  we continue to drop  particles randomly in the region of 
length r, it is not difficult to see that we must drop  of the order of rl" particles to 
have a finite probability that a particle land above one already in thar layer. Thus 
t - yl" and ( 1 )  - Ly-' ' - L'-P''' . The density of ballistic aggregation thus depends on 
L as C P l 2 .  This agrees with and interpolates between the conclusions of Ball and 
Witten (1984) for p = 0, and  with Gelband and Strenski (1985) for p = 1. I t  should be 
possible to construct similar arguments for the dynamic properties of ballistic aggre- 
gation. 

In this paper we have described the dynamic properties of infinite-range ballistic 
aggregation. We have exactly calculated the long- and short-time scaling exponents 
as well as the crossover exponent, and have computed the scaling function. As we 
have shown, the asymptotic behaviour of I R B A  is qualitatively different from that of 
short-range ballistic aggregation. Nevertheless, i t  is possible to relate the finite- and 
infinite-range theories by defining a class of systems with interactions which fall off 
like a power of the size of the substrate. Using this interpolation, we were able to 
deduce the form of the density in all these cases. Such a class of interpolating theories 
should be equally useful for studying the dynamics of ballistic aggregation, and will 
shed light on the relation of I R B A  to the short-range problem. 
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